搜索

您的关键词

种子科学与工程系
张丹,女,博士,教授,博士生导师。中原英才计划中原青年拔尖人才、河南省高层次人才、河南省杰出青年、河南省高校科技创新人才、河南省青年骨干教师。
研究领域:大豆分子生物学与分子育种
研究方向:大豆品质/抗逆重要基因挖掘及分子育种
讲授课程:生物统计学,作物育种学
E-mailzhangd@henau.edu.cn
学术兼职:河南省农作物品种审定委员会委员、河南省耕地轮作扩种大豆专家组成员等。期刊Plant Cell、Plant Physiology及New Phytologist等评审专家等。
教育与研究/工作经历
2010/10-至今,河南农业大学,农学院,教授
2005/09-2010/06,南京农业大学,作物遗传育种,硕博士学位
2001/09-2005/06,河南农业大学,农学,学士学位
主要承担项目与课题
  1. 国家自然科学基金面上项目 (32572360),GmGDPD2-TFs-GmACPs级联调控大豆根系分泌物响应低磷胁迫的分子机制,2026-2029,在研,主持。
  2. 国家自然科学基金面上项目 (32272171),氨基酸转运蛋白GmAAP8提高大豆水溶性蛋白含量的分子机制研究,2023-2026,在研,主持。
  3. 国家自然科学基金面上项目 (32072088),PE13调控大豆根系形态及磷效率的分子机理研究,2021-2024,结题,主持。
  4. 农业生物育种国家科技重大专项,“优质新基因挖掘与育种价值评价”专项子课题 (2023ZD040690404),大豆油菜优质新基因挖掘与育种价值评价,2023.12-2025.12,在研。
  5. 河南省教育厅高校创新团队项目,大豆优质多抗新基因的挖掘与分子机制研究,2026-2028,在研,主持。
  6. 国家自然科学基金青年基金项目 (31301336),大豆耐低磷新基因的鉴定及优异等位变异的发掘,2014-2016,结题,主持。
  7. 河南省杰出青年科学基金项目 (242300421031),GmGDPD2调控大豆耐低磷胁迫的分子机制研究,2024-2027,在研,主持。
  8. 国家重点研发计划项目 (2016YFD0100500),大豆水溶性蛋白重要功能基因发掘与分子机制研究,2016-2021,结题,主持。
  9. 河南省重大科技专项子课题 (221100110300),大豆育种关键性状优异基因挖掘与品种选育,2022-2024,主持,在研。
  10. 河南省联合攻关项目 (2022010304),河南省大豆良种重大科研联合攻关项目,2022-2025,主持,在研。
  11. 河南省教育厅高校创新人才项目 (15HASTIT034),大豆耐低磷新基因的发掘与功能研究,2015-2017,结题,主持。
  12. 中国博士后第十批特别资助 (2017T100532),GmACP2参与大豆响应低磷胁迫的分子机理,2017-2019,结题,主持。
  13. 中国博士后科学基金第58批面上项目 (2015M580630),大豆 GmACP2 基因的功能分析及育种利用研究,2016-2017,结题,主持。
  14. 河南省科技攻关项目 (30601916),高水溶性蛋白大豆优异种质的创制与应用,2019-2020,结题,主持。
  15. 河南农业大学科技创新基金项目 (KJCX2019C02),GmERF1调控大豆根系形态及磷吸收的分子机理,2019-2020,结题,主持。
  16. 国家重点实验室开放课题 (ZW2010003),大豆耐低磷相关基因的联合定位及图位克隆,2012-2013,结题,主持。
  17. 国家973子课题 (CB1259060),大豆耐低磷新基因的发现与应用,2011-2013,结题,主持。
  18. 河南省高等学校重点科研项目计划 (20A210017),GmAAP8提高大豆水溶性蛋白质含量的分子机制研究,2020-2021年,结题,主持。
  19. 河南省高等学校青年骨干教师资助计划项目,大豆耐低磷主效QTLqPE18的精细定位及图位克隆,2016-2017,结题,主持。
  20. 河南省教育厅科学技术研究重点项目 (13B210056),大豆耐低磷相关QTL的精细定位研究,2012-2015,结题,主持。
部分发表论文
  1. Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lü H, Zhang D, Wang J, Kong F, Yu D*, Zhang H*, Zhang D*. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. The Plant Cell, 2024, 36(6):2176-2200. doi:10.1093/plcell/koae041.
  2. Yang Y, Zhang L, Zuo H, Yang Y, Hu D, Zhang S, Yuan W, Zhai X, He M, Xu M, Wang J, Lu W, Hu D, Yu D, Huang F*, Zhang D*. GmGASA12 coordinates hormonal dynamics to enhance soybean water-soluble protein accumulation and seed size. Journal of Integrative Plant Biology, 2025, 67:2401-2415.
  3. Zhai X, Qin H, Du X, Zhang X, Xiong E, Chu S, Guo N, Hu D*, Yang Y*, Zhang D*. Efficient creation and phenotypic differentiation mechanism of autotetraploid soybean. Industrial Crops and Products, 2025.
  4. Zhu H#, Hu D#, Yang Y, Zhai X, Zhang S, He M, Zuo H, Zhang L, Xu M, Chu S, Lü H, Zhang H, Zhang Y*, Zhang D*. GmERF57 negatively regulates root development and phosphate absorption in soybean. Plant Stress, 2025, 15:100763.
  5. Xu M, Zuo H, He M, Yang Y, Zhang L, Zhai X, Hu D, Lü H, Chu S, Wang J*, Zhang D*. Functional analysis of GmMATE gene family in soybean phosphorus homeostasis and abiotic stress resilience. Plant Science, 2025, 359:112622.
  6. Zuo H, Gao H, Huo M, Xu M, Zhang L, Huang Q, Lv H, Chu S, Xiong E, Hu D*, Zhang D*. The GmGDPD family regulates phosphorus efficiency in soybean and enables precision breeding with domestication-lost alleles. Plant Genome, 2025, 18:e70094.
  7. Hu D, Zhang J, Yang Y, Yu D, Zhang H*, Zhang D*. Molecular mechanisms underlying plant responses to low phosphate stress and the potential applications in crop improvement. New Crops, 2025, 100064. doi: 10.1016/j.ncrops.2024.100064.
  8. Yang Y+, Wang L+, Zhang D+, Che Z, Wang Q, Cui R, Zhao W, Huang F, Zhang H, Cheng H, Yu D. Soybean type-B response regulator GmRR1 mediates phosphorus uptake and yield by modifying root architecture. Plant Physiology, 2024, 194(3):1527-1544. doi: 10.1093/plphys/kiad570.
  9. Zhang Y, Wang L, Song B, Zhang D*, Zhang H*. Genome-wide identification, characterization, and expression analysis of the amino acid permease gene family in soybean. Agronomy, 2024, 14:52. doi:10.3390/agronomy14010052.
  10. Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Zhang S, Zhang J, Hu D*, Zhang D*. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiology, 2023, 192(2): 1099-1114. doi:10.1093/plphys/kiad170.
  11. Yang Y, Wang R, Wang L, Cui R, Zhang H, Che Z, Hu D, Chu S, Jiao Y, Yu D*, Zhang D*. GmEIL4 improved soybean tolerance to phosphorus deficiency by enhancing root system development. Plant Cell and Environment, 2023, 46(2):592-606. doi.org/10.1111 /pce.14497.
  12. Wang L, Zhang J, Wang R, Huang Z, Cui R, Zhu H, Yang Y*, Zhang D*. Genome-wide identification and characterization of CA genes in soybean (Glycine max), Functional & Integrative Genomics, 2023, 23:37. doi: 10.1007/s10142-023-00966-9.
  13. Xu H, Zhang H, Fan Y, Wang R, Cui R, Liu X, Chu S, Jiao Y, Zhang X*, Zhang D*. The purple acid phosphatase GmPAP17 predominantly enhances phosphorus use efficiency in soybean. Plant Science, 2022, 320:111283. doi:10.1016/j.plantsci.2022.111283.
  14. Yang Y, Wang L, Che Z, Wang R, Cui R, Xu H, Chu S, Jiao Y, Zhang H, Yu D*, Zhang D*. Novel target sites for soybean yield enhancement by photosynthesis. Journal of Plant Physiology, 2022, 268:153580. doi:10.1016/j.jplph.2021.153580.
  15. Liu X, Yang Y, Wang R, Cui R, Xu H, Sun C, Wang J, Zhang H, Chen H, Zhang D*. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Plant Science, 2022, 315:111148. doi:10.1016/j.plantsci.2021.111148.
  16. Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH., An Y-QC, Li Z*, Zhang D*. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics, 2021, 22(1):453. doi:10.1186/s12864-021-07783-z.
  17. Zhang J, Xu H, Yang Y, Zhang X, Huang Z*, Zhang D*. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting soybean genotypes subjected to phosphate starvation. BMC genomics, 2021, 22(1):433. doi:10.1186/s12864-021-07750-8.
  18. Sun C, Yang Y, Jia L, Liu X, Xu H, Lv H, Huang Z, Zhang D*. QTL mapping of the genetic basis of stem diameter in soybean. Planta, 2021, 253(5):109. doi:10.1007/s00425-021-03628-x.
  19. Yang Y, Zhu X, Cui R, Wang R, Li H, Wang J, Chen H*, Zhang D*. Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta, 2021, 254(6):110. doi:10.1007/s00425-021-03760-8.
  20. Zhang H, Yang Y, Sun C, Liu X, Lv L, Hu Z, Yu D, Zhang D*. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean. Plant Cell and Environment, 2020, 43, 2080-2094. doi: 10.1111/pce.13816.
  21. Liu X, Chu S, Sun C, Xu H, Zhang J, Jiao Y, Zhang D*. Genome-wide identification of low phosphorus responsive microRNAs in two soybean genotypes by high-throughput sequencing. Functional & Integrative Genomics, 2020, 20(6): 825-838. doi:10.1007/s10142-020-00754-9.
  22. Yu K, Wang J, Sun C, Liu X, Xu H, Yang Y, Dong L*, Zhang D*. High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations. BMC Plant Biology, 2020, 20(1):470. doi:10.1186/s12870-020-02684-x.
  1. Chu S, Zhang X, Yu K, Lv L, Sun C, Liu X, Zhang J, Jiao Y, Zhang D*. Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress. International Journal of Molecular Sciences, 2020, 21(18):6817. doi:10.3390/ijms21186817.
  2. Lv L, Yu K, Lü H, Zhang X, Liu X, Sun C, Xu H, Zhang J, He X*, Zhang D*. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress. PLoS One, 2020, 15(1):e0227243. doi:10.1371/journal.pone.0227243.
  3. Zhang D+*, Zhang H+, Hu Z+, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An Y-QC, Yu D*. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. Plos Genetics, 2019, 5(7):e1008267. doi:10.1371/journal.pgen.1008267.
  4. Chu S, Li H, Zhang X, Yu K, Chao M, Han S*, Zhang D*. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean. International Journal of Molecular Sciences, 2018, 19(6):1688. doi:10.3390/ijms19061688.
  5. Lü H, Yang Y, Li H, Liu Q, Zhang J, Yin J, Chu S, Zhang X, Yu K, Lv L, Chen X, Zhang D*. Genome-Wide Association Studies of Photosynthetic Traits Related to Phosphorus Efficiency in Soybean. Frontiers in Plant Science, 2018, 9:1226. doi:10.3389/fpls.2018.01226.
  6. Zhang D+*, Lü H+, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D*. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Scientific Reports, 2017, 7(1):5053. doi:10.1038/s41598-017-04685-7.
  7. Zhang D*, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Molecular Biology, 2017, 93:137-150. doi:10.1007/s11103-016-0552-x.
  8. Zhang H, Chu S, Zhang D*. Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and-Sufficient Conditions. Data, 2017, 2(2):17. doi:10.3390/data2020017.
  9. Li H, Yang Y, Zhang H, Chu S, Zhang X, Yin D, Yu D, Zhang D*. A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map. Frontiers in Plant Science. 2016, 7:924. doi:10.3389/fpls.2016.00924.
  10. Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lv H, Yu D. High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Frontiers in Plant Science, 2016, 7:372. doi:10.3389/fpls.2016.00372.
  11. Zhang D+, Song H+, Cheng H+, Hao D, Wang H, Kan G, Jin H, Yu D. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genetics, 2014, 10(1) :e1004061. doi:10.1371/journal.pgen.1004061.
  12. Zhang D, Kan G, Hu Z, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao D, Yu D. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theoretical And Applied Genetics, 2014, 127(9):1905-15. doi:10.1007/s00122-014-2348-1.
  13. Zhang D, Cheng H, Hu Z, Wang H, Kan G, Liu C, Yu D. Fine mapping of a major flowering time QTL on soybean chromosome 6 combining linkage and association analysis. Euphytica, 2013, 191(1):23-33. doi:10.1007/s10681-012-0840-8.
  14. Zhang D, Cheng H, Wang H, Zhang H, Liu C, Yu D. Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). Journal of Genetics and Genomics, 2010, 37(8):545-56. doi:10.1016/S1673-8527(09)60074-6.
  15. Zhang D, Liu C, Cheng H, Kan G, Cu S, Meng Q, Gai J, Yu D. Quantitative trait loci associated with soybean tolerance to low-Phosphorus stress based on flower and pod abscission. Plant Breeding, 2010, 129(3):243-249. doi:10.1111/j.1439-0523.2009.01682.x.
  16. Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seeding stage. Euphytica, 2009, 167:313-322. doi:10.1007/s10681-009-9880-0.
授权发明专利
  1. Zhang Dan, Yang Yifei, Hu Dandan, Zhang Yu, Jiao Yongqing, Zhang Xingguo, Chu Shanshan, Xiong Erhui. Die Anwendung von GmAAP7 bei der Regulierung von Sojapflanzengröße und -ertrag,2025.07.02,Luxembourg,LU600037
  2. Zhang Dan, Chu Shanshan, Hu Dandan, Jiao Yongqing, Zhang Yingguo, Xiong erhui. ANWENDUNG VON ETHYLENUNEMPFINDLICHEM PROTEIN GMEIN3 VON PFLANZENWURZELN, 2024.10.31, Belgium, BE2024/5133
  3. Dan Zhang, Shanshan Chu, Yongqing Jiao. Soybean Oleosin Gene GmOLEO1 and Its Coding Protein and Application, 2022.2.25, Luxembourg, LU500576
  4. Dan Zhang, Shanshan Chu, Yongqing Jiao, Yuming Yang. Molecular Marker Indel6 for Oil-related Gene and Application Thereof, 2022.3.1, Luxembourg, LU500606
  5. Dan Zhang, Haiyan Lv, Yuming Yang, Hengyou Zhang, Li Wang. USE OF GMAAP PROTEIN AND GMAAP GENE IN BREEDING SOYBEANS, 2021.11.9,Netherlands, 2027897
  6. 张丹,王瑞阳,胡丹丹,褚姗姗,矫永庆。乙烯不敏感蛋白GmEIN3在提高植物磷吸收利用率和促进植物根系生长中的应用,2024.10.25,中国,ZL202210712633.X
  7. 张丹,吕海燕,杨宇明,张恒友,王莉。GmAAP蛋白和GmAAP基因在大豆育种中的应用,2022.2.8,中国,ZL202011354096.3
  8. 张丹,杨宇明,张恒友,吕海燕,褚姗姗。一种大豆蛋白激酶基因GmSTK_IRAK的应用,2021.9.21,中国,ZL202011330937.7
  9. 张丹,董中东,刘伟,马兴立,李忠锋。一种油分相关基因分子标记Indel6及其应用,2020.1.7,中国,ZL201910168673.0
  10. 张丹,褚姗姗,马兴立。大豆耐低磷基因GmACP2、编码蛋白及其应用,2020.1.31,中国,ZL201610294032.6
  11. 张丹,褚姗姗,李红岩。大豆油体蛋白基因GmOLEO1及其编码蛋白与应用, 2020.4.17,中国,ZL201710059317.6
奖励与荣誉
  1. 河南省高校创新团队,2025
  2. 河南省教育厅优秀科技论文奖一等奖,2025
  3. 河南省杰出青年,2023
  4. 中原英才计划青年拔尖人才,2022
  5. 河南省科学技术成果奖,2021
  6. 河南省教育厅优秀科技论文奖一等奖,2021
  7. 河南省教育厅优秀科技论文奖一等奖,2019
  8. 河南省第四届自然科学学术论文一等奖,2017
  9. 河南省第三届自然科学学术论文一等奖,2015
  10. 中国遗传学会数量遗传会会员,2019
  11. 河南农业大学就业创业工作先进工作者,2019
  12. 中国博士后科学基金获得者选介,2018
  13. 河南省品种审定委员会委员,2017
  14. 河南省高校创新人才,2016
  15. 河南省青年骨干教师,2015